Study of Correlations Between SCIAMACHY, MODIS, and CERES Measurements For CLARREO

Z. Jin, C. Lukachin, B. Wielicki, D. Young, and A. Gopalan

SSAI, Inc. / NASA Langley research Center May, 2011

Objective: evaluate the feasibility of using CLARREO solar benchmark for fingerprinting climate changes.

To use the atmospheric/cloud/surface properties from MODIS to test and validate the fingerprinting results from SCIAM data, we need to know

- Are the measurements from the different platforms correlated?
- If yes, how well are they correlated?
- ➤ How much will the sampling difference and possible instrument degradation affect the correlation, and hence the fingerprinting?

Then, we can determine

- ✓ Are the fingerprinting and its validation based on observations from multiplatforms feasible?
- ✓ If yes, what's the expected accuracy limit of fingerprinting detection?

Table 1. The Data Sets Used in This Study

Sensor	Measurement	Spectral range	Platform
SCIAM	Spectral radiance solar irradiance	0.25 – 1.75 μm (Δλ: 0.24-1 nm)	Envisat
MODIS	Spectral radiance	Channels 1 and 2 (645 nm; 858nm)	Terra
CERES	Broadband radiance	0.3 – 5.0 μm	Terra

Envisat and Terra have similar sun-synchronous orbit:

Satellite	Altitude	Inclination	Period	Equator crossing
Envisat	799.8 km	98.6°	100.6 min	10:00 LST
Terra	705 km	98.2°	98.8 min	10:30 LST

MODIS/CERES (Terra) and SCIAMACHY (Envisat) ground tracks 8:30 – 10:30, 09-30-2011

Time: 19:35

The average time difference of overpass between Envisat and Terra is about 30 min. This **doesn't** mean that the measurements from them are nearly co-incident or co-located.

Five latitude regions

Monthly averages are done in the 5 large latitude regions and globe.

Comparison of monthly mean *nadir* reflectance (10°) between SCIAM and MODIS (Ch1) in 5 latitude regions and globe.

When averaged to large domains, the two measurements are almost the same though they are not

SCIAM in MODIS Chn 2 MODIS Chn 2 (860 nm)

Spectral-integrated SCIAM CERES SW Ref (nadir)

SCIAM-MOD1 MODIS Ch1

-0.0180 ±0.0128 -0.0147 ±0.0125 SP	Region	Slope (decade ⁻¹)
-0.0147 ±0.0125 SP	ND	-0.0180 ±0.0128
SP 0.0307 ±0.0124 -0.0072 ±0.0109 0.0067 ±0.0096 -0.0091 ±0.0061	INP	-0.0147 ±0.0125
0.0307 ±0.0124 -0.0072 ±0.0109 0.0067 ±0.0096 -0.0091 ±0.0061	CD	0.0222 ±0.0126
O.0067 ±0.0096 -0.0091 ±0.0061	34	0.0307 ±0.0124
0.0067 ±0.0096 -0.0091 ±0.0061	NIN AI	-0.0072 ±0.0109
SML	INIVIL	0.0067 ±0.0096
	CNAL	-0.0091 ±0.0061
-0.0032 ±0.0007	SIVIL	-0.0032 ±0.0067
-0.0045 ±0.0048	TDO	-0.0045 ±0.0048
-0.0027 ±0.0045	TKO	-0.0027 ±0.0045
-0.0059 ±0.0039	Clh	-0.0059 ±0.0039
-0.0029 ±0.0039	Glb	-0.0029 ±0.0039

MODIS Chn 1 (640 nm)

SCIAM-MOD2 MODIS Ch2

Region	Slope (decade ⁻¹)
NP	-0.0198 ±0.0133
INP	-0.0090 ±0.0130
SP	0.0110 ±0.0119
38	0.0293 ±0.0126
NML	-0.0106 ±0.0108
NIVIL	0.0048 ±0.0100
SML	-0.0127 ±0.0067
SIVIL	-0.0015 ±0.0066
TRO	-0.0072 ±0.0048
IKO	-0.0019 ±0.0048
Glb	-0.0094 ±0.0040
GID	-0.0019 ±0.0044

SCIAM Broadband CERES Shortwave

Region	Slope (decade ⁻¹)
NP	-0.0146 ±0.0098
INP	-0.0104 ±0.0094
SP	0.0134 ±0.0091
38	0.0201 ±0.0082
NML	-0.0065 ±0.0083
INIVIL	-0.0043 ±0.0074
SML	-0.0081 ±0.0048
SIVIL	-0.0018 ±0.0050
TRO	-0.0041 ±0.0037
TKO	-0.0012 ±0.0032
Glb	-0.0058 ±0.0030
GID	-0.0017 ±0.0027

1σ of Monthly Mean Reflectance Anomaly in 5 Regions From Different Sensors

	SCIAM (bb)	CERES	MOD1	SCIA in MOD1	MOD2	SCIA in MOD2	
NP	0.00585	0.00573	0.00766	0.00801	0.00769	0.00838	Largest
SP	0.00487	0.00524	0.00795	0.00726	0.00787	0.00622	
NML	0.00542	0.00503	0.00654	0.00743	0.00678	0.00748	
SML	0.00314	0.00322	0.00435	0.00423	0.00425	0.00477	
TRO	0.00245	0.00219	0.00310	0.00336	0.00326	0.00349	
Globe	0.00205	0.00180	0.00261	0.00272	0.00290	0.00305	Smallest

All show largest σ in NP and decreasing in order from NP, SP, NML, SML, TRO to Glebe Consistent between measurements from the two platforms in a same band.

Correlations of reflectance variation with cloud fraction (F_c), optical depth (τ), Snow/sea ice fraction (F_s)

(Shown only parameters having correlation higher than 0.5)

Region	Para	SCIM-	CERES	SCIM-	SCIM-	CERES-
Kegion	lala	bb	CERES	MOD1	MOD2	Albedo
	$\mathbf{F_c}$	0.414	0.352	0.380	0.341	0.447
NP	τ	0.570	0.516	0.557	0.539	0.541
	$\mathbf{F_{SI}}$	0.618	0.631	0.602	0.666	0.624
	$\mathbf{F_c}$	-0.413	-0.486	-0.393	-0.423	-0.358
SP	τ	-0.179	-0.216	-0.186	-0.202	-0.168
	$\mathbf{F_{SI}}$	0.635	0.690	0.623	0.638	0.659
	$\mathbf{F_c}$	0.779	0.824	0.779	0.758	0.846
NML	τ	0.576	0.591	0.573	0.604	0.551
	$\mathbf{F}_{\mathbf{SI}}$	0.193	0.089	0.241	0.200	0.210
	$\mathbf{F_c}$	0.770	0.772	0.776	0.766	0.859
SML	τ	0.580	0.537	0.592	0.596	0.589
	$\mathbf{F_{si}}$	0.378	0.158	0.390	0.393	0.254
	$\mathbf{F_c}$	0.804	0.893	0.817	0.791	0.919
TRO	τ	0.670	0.615	0.659	0.713	0.663
	$\mathbf{F_{SI}}$	0.057	-0.011	0.056	-0.009	-0.007
_	$\mathbf{F_c}$	0.814	0.797	0.821	0.804	0.846
Globe	τ	0.603	0.536	0.576	0.665	0.537
	$\mathbf{F}_{\mathbf{SI}}$	0.192	0.191	0.198	0.192	0.245

Correlation coefficients of anomalies between the reflectance/albedo and the three parameters (F_c – cloud fraction, τ - cloud optical depth, and F_s – snow and sea ice fraction).

Summary

- 1) When averaged over large spatial regions, the monthly mean reflectances in a common spectral band from two independent space platforms (Terra and Envisat) are nearly identical and highly correlated, though their instantaneous measurements are not co-located and thus not comparable.
- 2) The time series of reflectance anomalies from SCIAM, MODIS and CERES are similar and are well correlated with each other; they are also correlated with the variations of the atmospheric/surface properties, especially cloud fraction, optical depth, and snow/ice coverage.
- 3) Compared with the natural variability, the slope (trend) of mean reflectance change in large climate regions is small; the relative difference in slope from different data sets could be significant due to different instrument degradations.

4) The results have implications for CLARREO:

- The combined data of SCIAM/MODIS/CERES could be used to test the solar fingerprinting approach for CLARREO. However, the inconsistency of stability between different instruments seems too large to have a reliable long-term climate change detection.
- The nadir sampling strategy of CLARREO is appropriate and sufficient for the solar benchmarking and fingerprinting.
- Reliable solar fingerprinting of climate changes requires accurate and consistent reflectance spectrum.

Backup slides

SCIAMACHY Simulated Reflectance: MODIS Band 8

Plot from Costy

MODIS Chn 1 (640 nm) CERES Ref (nadir)

SCIAM-MOD6 MODIS Ch6(1640nm)